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On long waves with cross-wind in an atmosphere 
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Department of Mathematics, The University of Wisconsin, Madison 

(Received 10 March 1966 and in revised forin 14 August 1966) 

Asymptotic equations of long waves in a compressible medium of infinite height 
with arbitrary density and wind profiles, including cross-wind, are systematically 
derived to provide the mathematical description of certain pressure-front 
phenomena observed in the atmosphere. It is assumed that the final state of the 
wave is a plane wave moving with nearly constant velocity, even though its 
velocity field has a component transverse to the direction of propagation. The 
coefficients of the asymptotic long-wave equations are found to  depend on the 
equilibrium profiles of the density and of the velocity component in the direction 
of propagation of the wave, but not on the profile of the transverse velocity. Any 
horizontal direction of propagation is found to be possible, even for waves of 
permanent type. 

1. Introduction 
Meteorological stations in the midwestern United States have recorded 

pressure variations which show a sudden rise over a short time (Tepper 1954), 
and their importance is underlined by the observation that severe local storms 
often follow the sweep of the pressure jumps. It is in fact thought (Tepper 1954; 
Abdullah 1956) that such jumps may act as the excitation for the formation of 
tornadoes. The most common genesis of the reported pressure disturbances 
appears to be due to a cold front invading a region with an inversion layer. 

Pressure jump lines, constructed according to isochrone patterns, indicate that 
both oscillatory and one-shot branches occur which are long gravity waves in the 
general category of the so-called undular jumps of hydraulics. The explanation 
of such phenomena is beyond the scope of the linear theory of small-amplitude 
gravity waves. On the other hand, application of the long-wave theory of surface 
waves on water is impeded by two major difficulties, namely the compressi- 
bility of the atmosphere and the need to take account of cross-wind, since the 
motion in the atmosphere is in general three-dimensional. A substantially new 
approach is therefore needed, which extends the available two-dimensional long- 
wave theory to a stratified compressible medium of infinite height with three- 
dimensional shear. Such a theory will be presented here, and it can be applied in 
turn, with only minor modifications, to long waves in general water bodies of 
constant depth with density stratification and cross-currents, in order to explain 
internal undular fronts in the ocean as observed by Frassetto (1964). 

The mathematical model developed below concerns a compressible medium 
of infinite height with arbitrary, continuous density and wind profiles in the 
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initial steady state. Effects of viscosity, condensation and the earth’s rotation 
and curvature are neglected. It is assumed that an unsteady wave has been 
generated by some disturbance, and that it has formed rectilinear ‘ crests ’ and 
‘troughs’ which propagate in the direction normal to their own with a velocity 
close to some fixed speed G. It is also assumed that the relevant horizontal scale 
L of the wave (which cannot always be associated with a wavelength) is large 
compared with the height H of the homogeneous atmosphere, and that the wave 
is a near-steady motion for an observer travelling with the velocity G in the direc- 
tion of propagation. Hydraulic long waves of such a type have been studied by 
many authors since Airy (1845) and Boussinesq (1871). Recently permanent 
waves in incompressible fluids of more geophysical interest have been considered 
by Peters & Stoker (1960), Benjamin (1962,1966), Long (1965), Peters (1966a, b) ,  
and Benney (1966), in whose paper oblique solitary waves were first mentioned. 
It has been known that their propagation velocity must be close to some ‘ critical ’ 
velocity of the Iinear theory of small-amplitude gravity waves (0.g. Keller 1948; 
Peters & Stoker 1960); the same is true in the atmosphere of our problem. 

The stretching transformation used here to develop asymptotic equations for 
the long waves is an extension of a transformation due to Gardner & Morikawa 
(1960) and Meyer (1967). It will be formulated in $2, and the zeroth and first 
approximations to the perturbation field will be obtained in $ 3  in terms of a 
single unknown function, which will then be discussed in $4. It is an intrinsic 
feature of long-wave theory that different types of waves are possible, and their 
separate discovery in hydraulics led to the long-wave ‘paradox ’, first elucidated 
by Ursell (1953). To avoid a similar confusion in meteorology, a unified deriva- 
tion of the asymptotic equations is presented here, which indicates clearly the 
respective areas of application of the different asymptotic equations ($ 4). 
Accordingly, most of the discussion of the results is best postponed to that section. 

Results common to all wave types include the following. Propagation is possible 
in any horizontal direction in the atmosphere, regardless of the vertical distribu- 
tions (or, briefly, profiles) of the wind components in the equilibrium state. The 
critical velocity ($3)  is the same for all wave types and depends only on the 
equilibrium profiles of the density and of the velocity component in the direction 
of propagation. The horizontal distribution of the first-order perturbation 
density, pressure, and velocity is similarly independent of equilibrium cross- 
wind; but the vertical profile of the perturbation velocity ($3) depends on both 
components of the equilibrium wind, and a three-dimensional shear in the equi- 
librium atmosphere implies a three-dimensional perturbation velocity. Finally, 
the model to be presented does not aim at a realistic description of the initial 
disturbance causing the wave, but it will emerge in $ 4 that there are grounds for 
the conjecture that the model can describe a large part of the process by which 
the wave gradually develops into its final state. 

The results of this study may seem depressing tothemetaorologist, because they 
indicate the possibility of so many different long-wave motions in the atmo- 
sphere. On the other hand, a complete observational exploration of any given 
disturbance, at  all atmospheric levels and over a time interval, is practically un- 
attainable. Even to diagnose the type of an atmospheric disturbance under study 
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may therefore require the use of whatever clues the theory can offer. Once the 
type has been diagnosed, moreover, the theory will be seen to be capable of de- 
ducing a complete picture of the disturbance from only a rough knowledge of the 
equilibrium atmosphere and quite scanty observational data on the disturbance. 

2. Formulation 
We consider a compressible medium of infinite height supported by a rigid 

plane bottom surface, and assume that the pressure of the medium tends to zero 
as the height tends to infinity. A co-ordinate system (x, y, x )  is chosen such tha,t 
the (x,y)-plane coincides with the bottom surface and x is positive upward. 
Initially the medium is in a state of equilibrium, and the velocity vector field 
(zco(z), vo(z), 0 )  and the density distribution po(z) > 0 for 0 < z < cc are given. It 

a 

sin 0 

\ 
FIGURE 1. Wind profiles and the direction of wave propagation. 

is assumed that an unsteady wave travels into the medium, and, as time t in- 
creases, the unsteady wave approaches as its final state a plane wave which 
appears steady, or at least near-steady, to an observer travelling with a suitable 
constant speed c > 0 in the direction (cos 8, sin 8, 0 ) ,  where 0 is the angle between 
the direction of propagation and the x-axis (figure 1). 

The medium is assumed to be compressible and inviscid, so that its motion is - 
governed by the equations 

8p'plat + div (pq) = 0, 

paplat +p(q. grad) q = - gradp 

PIPb = p(P/Pb), 
subject to the conditions 

p+O as %+a, 
and w * = O  at  x = O .  
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Here q = (u, v, w*) is the velocity vector, p the pressure, p the density, g the 
gravitational constant, pb > 0 and p b  > 0 are respectively the pressure and 
density at z = 0 in the state of equilibrium, and €’(PIPb) is any function of p/pb 
defined in 0 < p < 03 such that 

dP/dp  > 0 for p >  0 and P-tO as p- tO.  

We assume for definiteness that po and its derivatives with respect to z tend to 
zero exponentially as z -+ co and that all the functions concerned are continuously 
differentiable as many times as required and, together with their derivatives, 
remain bounded as z + 00. 

To make the governing equations non-dimensional, it  is convenient to measure 
x, y, z in units of the height H = pb/gpb of the ‘homogeneous’ atmosphere, t in 
units of Hlc, u, v and w* in units of c ,  p in units of P b  c2, and p in units of Pb. It is 
known that the propagation speed of long water waves must be close to a critical 
speed near which linear theory indicates steady motions to be unstable (Peters &, 
Stoker 1960). Accordingly, we suppose that the propagation speed c is close to a 
critical speed (gH/Z)B, to be determined in $3, and follow Friedrichs & Hyers 
(1954) in regarding the difference between the two speeds as a small parameter. 
To express this non-dimensionally, write c2 = gH/h and 

z-h = &k (k 2 1).  

Non-degenerate solutions will emerge only if the variables x and y are stretched 
to reflect the fact that the waves are of horizontal scale large compared with the 
height H of the homogeneous atmosphere. Since four different stretching laws 
will turn out to be of physical interest, a general stretching transformation is 
introduced by 

6 = e9m(ax + by - t ) ,  T = eBm+nt, w* = dmw, (m, n 3 l), 

where a = cos 8, b = sin 8. Thus 5 measures distance from the wave front, on an 
appropriate scale, and the stretching parameter in T reflects the approach to 
steadiness in the proper Galilean frame. 

If we now consider u, v, w, p and p as functions of 6, T and z, equations (1) to 
(5) become (with U = au + bv - 1) 

&napla7 + a(pu)/ag + a(pw)/az = 0, 

&np au/aT + p u aulat + pw aupz = - a aplat, 

€np avpT + u avpg  t pw avlaz = - b aplat, 

~ + n p  auqaT + &mp u atu1a.g + PW a w p  = - appz + ~ k p  - zp. 

p = - e”P(p) + ZP(p), 

(6) 

(7)  

( 8 )  

(9) 

(10) 

245, 7, a) = 0, w(5,7,0) = 0. (11) 

(13) 

Assume now that the dependent variables have asymptotic expansions of the 
form 

where 4 stands for any one of U ,  u, v, w, p and p, and that q5 tends to the initial 
steady state as 5 + co. Substitution of (12) in (6) to (1  1) then yields a sequence of 

4 = 40(4 + ek+,(5, T , Z )  + €:”+142(t, 7 9 2 )  + . , 
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equations and conditions for successive approximations depending on the values 
of k, ?n and n. We shall only consider the cases (I) lc = m = n = 1, (11) k = m = 1,  
n > 1, (111) k = n = 1, m > 1, and (IV) m = n = 1, k > 1, which yield physically 
interesting results; for all of them, the zeroth and first approximations have the 
same form. 

3. Zeroth and first approximations 
The equations for the zeroth approximation govern the equilibrium state; 

with wo = 0 and uo, vo, pO given as functions only of z ,  they serve only to determine 
the zeroth approximation for the pressure a,s 

p o  = lP(po) = 1 po(z’)dz’ r (13) 

From (17) to (19) and (13), 
p1 = -1-11) o + P o f ,  
p1 = - 1-’f dpo/dz, 

where f = f ( [ ,  T), and, on the assumption that uil remains bounded as z+m,  it 
follows from (14) to ( l6) ,  after an integration with respect to z ,  that 

where 

(33) 

(33) 

(34) 

for a wave advancing into an atmosphere in equilibrium, where the boundary 
conditionp+p,, u+uO, w+v0 as [-+a impliesf+O as E+m, by (21). 

It is now seen from (23), (24) that a wave of the assumed, general type can 
exist only if Uo has no zero. This means that the propagation velocity c of long 
waves must differ from the values at  all levelsin the atmosphere of the component 
of wind velocity in the propagation direction. In  fact, the critical speed (and 
zeroth approximation to the propagation speed), (qH/Z)*, is given by 

because the condition w1 = 0 at z = 0 implies G(0) = 0, by (22). 
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Since G(z) is now also determined, (20) to (24) express all the fist-order devia- 
tions from equilibrium in terms of the single unknown function f ( 6 , ~ ) .  This func- 
tion describes their variation with time and with distance from the wave front. 
Their variation with height is already given explicitly by (20) to (24). The vertical 
distribution of the velocity perturbation is seen to depend rather intricately on 
the equilibrium wind profile; by contrast, the vertical distribution of the pressure 
and density perturbations depend on that profils only through the critical-speed 
parameter 1. If we use dimensional variables in ( 2 5 ) ,  then 

m -1 

0 
1 = h + = [j po(z) (auo(z) + buo(x) - c)-”dz] P b / C 2 ,  

and, to the zeroth approximation, c satisfies 

Following an argument by Peters (1966a) we can show that if auo(z) + bz>,(z) is a 
non-negative continuous function for 0 < x < co and m and M are respectively 
its minimum and maximum then there exist two roots of c, say c-, c,. with c- < rn. 
and c+ > M .  A discussion of the physical aspects of the values of c for the in- 
compressible case was given by Benjamin (1962). c ,  is the propagation velocity 
for waves travelling in the sense of the equilibrium longitudinal velocity, relative 
to the fluid, and c- is the propagation velocity for waves travelling in the opposite 
sense. In  case c- is negative, then a wave propagating in the opposite direction 
of 8 may teke place. 

4. The equations for f 
To determine f ,  we must proceed to the equations for the second approximation, 

C a s e I . k = m = n = l  

This corresponds to a wave for which the smallest scale L of the horizontal varia- 
tions is large compared with tho height H of the homogeneous atmosphere, for 
which the amplitude (in units of H )  is small of order (H/L)2 ,  and for which the 
unsteadiness (for the proper Galilean observer) has become so small that its 
time scale T is large compared with H / c  (lH/g)* in such a way that 
L3(HZ/g)i/(H3T) is of the order of unity. ( 6 )  to (12) then give 

u o a p z ~ a ~ + p , a u z ~ a ~ + a ~ p o w z ) ~ a ~  = -iiPl/a7-a(plUl)/a~-a(plwl)jaz = G,, (26) 

po uoari,jat+ aPz/ag+powzduo/d~ = -poaul/a7-po qau,/at 
-p1 UoaU1/a( -PIWldUo/dx -pow1 = Gz, (27) 

(28) 

(29) 

Po uo awlla< = - aPzlaz + P1- lP2, 

Pz = PzdPo/dPo f (B)Pv2Pz/dP; - ~-lPldPo/aPo~ 

subject to the conditions 

PZ(L 7,001 = 0, W z ( L  T , O )  = 0- (30) 
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(13), (21), (28) and (29) imply 

P2 = ( - 21)-1f2dpn/dz-po/‘ 0 uo(awi/at)dzl +Po ti(<, 71, (31) 

p2 = (212)-1f2d2pO/dz2+ Z-1(dpo/dz)/’ uO(awi/a[)dz’-I-z(f+ Ifi)dp,/dz, 
0 

(32) 

where both p 2  and p2+ 0 as z+ 00, since po and dp0/dz+ 0 exponentially by 
assumption, and it now follows from (26), (27) that 

(dpo/dz + lp, U i 2 )  afl/a[ - I ii(pnw2 Ui2)/az  = G, (33) 
with 

0, = z-ya2pO/az2)faf/az + a ( P o  1’ uo(a2wl/ap) az’)  / a ,  + aplp[ - uopo a2tt’l/ap 
0 

+ u;2(apo/az)faj/a6 + I u;2p, uO(a2wl/ap) - 1 U ~ G ,  + 1 ui2 G ~ .  

Integration of (33) with respect to z gives w2, and the condition that the con- 
nexion term w2 must remain bounded implies 

/ow G,dz = 0, 

by (25) and (30). This consistency condition for the second approximation deter- 
mines f. By some lengthy calculations, we finally obtain 

m0a3fl~~3+mlfaf/a[+m.2af/a~+m3af/a7 = 0, (34) 

where 

m2 = l - l ,  

m3 = 21 po U i 3 d z .  
S O r n  

The counterpart of (34) in water wave theory is known as the Korteweg-DeVries 
equation (Korteweg & DeVries 1895), a generalization of the so-called Boussinesq 
equation of solitary-wave theory. No analytic solution methods are known yet 
for (34), except when af/ar = 0 or m, = 0, but one particular solution decaying 
like t-t has been identified (Gardner & Morikawa 1960) and some successful 
computations have been reported by Morton (1962), which show that (34) can 
explain the development of meteorological pressure jumps. 

Cuse I I .  k = m = 1, n > 1 

This corresponds to a wave of even less unsteadiness than in case I, so that the 
horizontal scale L is large compared with the height H of the homogeneous atmo- 
sphere, but the time scale T is so much larger than ( lH/g)t  that L3(HZ/g)b/(H3T) 
is small. The amplitude is again of order (H/L)2 .  The equations for the second 
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approximation then differ from (36) to (30)  only by the absence of all the terms 
containing the derivative with respect to r. The argument used for case I now 
leads to the Boussinesq equation 

where a,, az may depend on 7. The present derivation shows that (39)  indicates 
the possibility of three slightly different physical phenomena. 

f 

FIGURE 2.  Solitary-wave profile. 

First, (39) indicates the existence of solutions of ( 1 )  to ( 5 )  which are altogether 
independent of r so that they are entirely steady in the proper Galilean frame and 
are therefore waves of ‘permanent type’. Their amplitude, and the excess of their 
propagation speed over the critical speed, are small of the order of (H/L)2,  and 
they correspond to the ‘solitary’ and ‘cnoidal’ waves of hydraulic theory. For 
the solitary wave, a, = a2 = 0, and the solution of (39)  is 

f = - (3m2/ml)  sech2 [ ( ( / 2 )  ( - m2/mo)8] 

(figure 2).  From ( 2 2 )  to (24)) the first-order perturbation velocity components (in 
units of cc) are 

= - (GdU,/dx+ Uxl) f ,  

I’; = ( b d u , / d x - a d ~ , / d ~ )  Gf ,  

u,; = c:UOGf, 

where U, is the component in the propagation direction (or, briefly, longitudinal 
component) and V, the transverse, horizontal component; the vertical compon- 
ent, w* = c h l ,  is weak even compared with the horizontal components. The 
horizontal variation of all three components is described by the common factor f 
(figure 2 ) ,  and accordingly these are one-shot, aperiodic waves which, once 
generated, can propagate without change of shape over long distances. It is seen 
from (25)  and (35) to (38) that the horizontal variations depend only on the pro- 
files of the density and of the longitudinal velocity component in the equilibrium 
atmosphere. On the other hand, the analysis shows that such internal waves may 
propagate in any horizontal direction, irrespective of the direction of the equi- 
librium wind, and that their perturbation velocity field is definitely three- 
dimensional, apart from very exceptional cases for which V, 3 0. For one such 
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case, a = 1, b = 0, vo = 0, (39) reduces to the two-dimensional internal wave of 
Shen (1966). The two-dimensional solitary wave in a stratified liquid with shear 
has been discussed by Benjamin (1962, 1966). 

Quite analogous remarks apply to the permanent cnoidal waves (for which a,, 
a2 are non-zero constants), except that these are periodic waves (Korteweg & 
DeVries 1895). They are distinct from linear, small-amplitude gravity waves in 
that they are not monochromatic and yet propagate without change of shape. 

A second physical phenomenon covered by (39) is that of waves which are 
permanent-three-dimensional, solitary or cnoidal waves-to the first approxi- 
mation, but show residual unsteadiness in higher approximations. How many 
approximations are steady depends on the magnitude of the exponent n, i.e. on 
how small L3( HZ/g)&/(EZ3T) is by comparison even with H / L .  

For cnoidal waves finally, the possibility of waves arises for which the ampli- 
tude or wavelength or both change slowly with time, even to the first approxima- 
tion, because a, and a2 depend on r. These coefficients can be interpreted in terms 
of the perturbation mass-flux, momentum-flux and energy-flux (Benjamin & 
Lighthill 1954) and their variation with time depends directly on the boundary 
conditions for the wave trains. 

Case III. k = n = 1, m > 1 

This corresponds to very long waves for which HIL  is small compared with the 
square root of the amplitude. The equations for the second-order approximation 
are then again (26) t o  (301, except that the term containing au?,/a[ vanishes in 
(28). Following the argument used in case I, we find 

m, f afpt+ m,afpt+ m,a f /a~  = 0,  

whence d f /dr  = 0 when d t / d r  = m~1(rn2+m,  f ) ,  

if m3 + 0. Thus any value off propagates with a velocity dependent on f ,  and 
wave propagation without change of shape is not possible. The counterpart of 
this result in two-dimensional hydraulic theory is often called Airy theory. 

This case is useful for the explanation of very long atmospheric waves in which 
a steepening of gradients during propagation is observed. For definiteness, con- 
sider only waves propagating in the sense of the equilibrium longitudinal velocity, 
relative to the fluid. Then laf/atl increases with time (at constant f ) ;  i.e. the wave 
steepens wherever m, f/m, is a decreasing function of 6 (at fixed 7). Since m3 < 0 
for this sense of propagation, by (38), it is seen from the last equation that I af/at l  
increases with time (at constant f ) ;  i.e. the wave steepens, wherever m,, f is an 
increasing function of 5 (at fixed 7). However, (36) shows that m, can, in principle, 
take either sign; it depends in a rather intricate manner on the equilibrium shear 
and density profiles, and both signs appear possible in realistic cases, even if there 
is no shear (Shen 1966). Such steepening will continue according to the last 
formula, until it has reduced the local horizontal scale to the order of magnitude 
approximate to case I. Indeed, cases 111, I and 11, in that order, form a very 
plausible sequence for explaining the gradual development of a wave of perman- 
ent type from an equilibrium atmosphere disturbed only by a very gentle horizon- 
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tal gradient of pressure. This notion is confirmed, moreover, by a numerical 
solution of (34) in the context of two-dimensional surface waves on water 
(Peregrine 1966). 

Case 11: m = n = 1, k > 1 

This corresponds to long waves for which the horizontal scale L and the time 
scale are related as for case 1, but the amplitude is small compared with (H/L)2,  
and the propagation speed is closer to the critical speed. From (6) to (12), the 
equations for the second-order approximation are found to be 

u, ap2/at + po q l a g  + a(pouj2)/az = - apl/aT, 

porhaeT2/at+ ap2jat+p,w2ach:ibldz = -poau,/a7, 
po uOawllat = - ap2/ax - ip,. 

P2 = PP&ddPO. 

FIGURE 3. Dispersive-wave profile. 

subject to the conditions 

they lead to the conclusion that f satisfies the linear equation 

ma Pf/at3 + m, af/& = 0, (40) 

0, that (40), the boundary conditionfjt, 7) + 0 
< 0 and f ( [ ,  0) = 0 for 6 > 0 

where m, and m3 are given by (35) and (38). 

as t-+ co, and the initial condition f(t, 0) = 1 for 
are all satisfied by (Gardner & Morikawa 1960) 

It is readily verified, if maim, 

, f ( t ,7)  = //:Ai(/*’)d,u’j = (&??J07/m3)-~<, 

(figure 3), where Ai(p’ )  denotes the Airy function (Jeffreys & Jeffreys 1946). This 
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solution therefore describes the development in time of a small, but initially 
rather sharp change in the equilibrium state of the atmosphere. The solution 
represents a gradually spreading wave which propagates into the equilibrium 
atmosphere, with the deviations from equilibrium rising to a fist maximum and 
thencethrough a sequence of undulations of algebraically decreasing amplitude 
and wavelength (figure 3)-to a second and slightly different equilibrium state 
of the atmosphere. 
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